quasirecognition by the prime graph of l_3(q) where 3 < q < 100

نویسندگان

s. s. salehi amiri

islamic azad university a. r. khalili asboei

islamic azad university a. iranmanesh

tarbiat modares university a. tehranian

islamic azad university

چکیده

let $g$ be a finite group. we construct the prime graph of $ g $,which is denoted by $ gamma(g) $ as follows: the vertex set of thisgraph is the prime divisors of $ |g| $ and two distinct vertices $ p$ and $ q $ are joined by an edge if and only if $ g $ contains anelement of order $ pq $.in this paper, we determine finite groups $ g $ with $ gamma(g) =gamma(l_3(q)) $, $2 leq q < 100 $ and prove that if $ q neq 2, 3$, then $l_3(q) $ is quasirecognizable by prime graph, i.e., if $g$is a finite group with the same prime graph as the finite simplegroup $l_3(q)$, then $g$ has a unique non-abelian composition factorisomorphic to $l_3(q)$. as a consequence of our results we provethat the simple group $l_{3}(4)$ is recognizable and the simplegroups $l_{3}(7)$ and $l_{3}(9)$ are $2-$recognizable by the primegraph.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasirecognition by the prime graph of L_3(q) where 3 < q < 100

Let $G$ be a finite group. We construct the prime graph of $ G $,which is denoted by $ Gamma(G) $ as follows: the vertex set of thisgraph is the prime divisors of $ |G| $ and two distinct vertices $ p$ and $ q $ are joined by an edge if and only if $ G $ contains anelement of order $ pq $.In this paper, we determine finite groups $ G $ with $ Gamma(G) =Gamma(L_3(q)) $, $2 leq q < 100 $ and prov...

متن کامل

quasirecognition by prime graph of $u_3(q)$ where $2 &lt; q =p^{alpha} &lt; 100$

let $g $ be a finite group and let $gamma(g)$ be the prime graph‎ ‎of g‎. ‎assume $2 < q = p^{alpha} < 100$‎. ‎we determine finite groups‎ ‎g such that $gamma(g) = gamma(u_3(q))$ and prove that if $q neq‎ ‎3‎, ‎5‎, ‎9‎, ‎17$‎, ‎then $u_3(q)$ is quasirecognizable by prime graph‎, ‎i.e‎. ‎if $g$ is a finite group with the same prime graph as the‎ ‎finite simple group $u_3(q)$‎, ‎then $g$ has a un...

متن کامل

quasirecognition by the prime graph of l_3(q) where 3 < q < 100

let $g$ be a finite group. we construct the prime graph of $ g $,which is denoted by $ gamma(g) $ as follows: the vertex set of thisgraph is the prime divisors of $ |g| $ and two distinct vertices $ p$ and $ q $ are joined by an edge if and only if $ g $ contains anelement of order $ pq $.in this paper, we determine finite groups $ g $ with $ gamma(g) =gamma(l_3(q)) $, $2 leq q < 100 $ and prov...

متن کامل

Quasirecognition by Prime Graph of the Groups

Let G be a finite group. The prime graph Γ(G) of G is defined as follows: The set of vertices of Γ(G) is the set of prime divisors of |G| and two distinct vertices p and p′ are connected in Γ(G), whenever G has an element of order pp′. A non-abelian simple group P is called recognizable by prime graph if for any finite group G with Γ(G) = Γ(P ), G has a composition factor isomorphic to P . In [...

متن کامل

quasirecognition by prime graph of finite simple groups ${}^2d_n(3)$

‎let $g$ be a finite group‎. ‎in [ghasemabadi et al.‎, ‎characterizations of the simple group ${}^2d_n(3)$ by prime graph‎ ‎and spectrum‎, ‎monatsh math.‎, ‎2011] it is‎ ‎proved that if $n$ is odd‎, ‎then ${}^2d _n(3)$ is recognizable by‎ ‎prime graph and also by element orders‎. ‎in this paper we prove‎ ‎that if $n$ is even‎, ‎then $d={}^2d_{n}(3)$ is quasirecognizable by‎ ‎prime graph‎, ‎i.e‎...

متن کامل

characterization of g2(q), where 2 &lt; q = 1(mod3) by order components

in this paper we will prove that the simple group g2(q) where 2 < q = 1(mod3)is recognizable by the set of its order components, also other word we prove that if g is a nite group with oc(g) = oc(g2(q)), then g is isomorphic to g2(q).

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۳۹، شماره ۲، صفحات ۲۸۹-۳۰۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023